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ABSTRACT 

 

    In this paper, we introduce the edge-to-vertex e − u path, the edge-

to-vertex detour distance D(e, v), the edge-to-vertex e − v detour, the 
edge-to-vertex detour eccentricity eD2(v), the edge-to-vertex detour 

radius R2 , and the edge-to-vertex detour diameter D2 of a connected 

graph G, where v is a vertex and e an edge in G. We determine these 

parameters for some standard graphs. It is shown that R2 ≤ D2 ≤ 2R2+1 

for every connected graph G and that every two positive integers a 

and b with a ≤ b ≤ 2a+1 are realizable as the edge-to-vertex detour 

radius and the edge-to-vertex detour diameter, respectively, of some 

connected graph. Also it is shown that for any two positive integers a, 

b with a ≤ b are realizable as the edge-to-vertex radius and the edge-

to-vertex detour radius, respectively, of some connected graph and 

also for any two positive integers a, b with a≤ b are realizable as the 
edge-to-vertex diameter and the edge-to-vertex detour diameter, 

respectively, of some connected graph. Also we introduce the edge-

to-vertex detour center CD2(G) and the edge-to-vertex detour 

periphery PD2(G). It is shown that the edge-to-vertex detour center of 
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every connected graph does not lie in a single block. 
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1 Introduction 

By a graph G = (V, E) we mean a finite undirected connected simple 
graph. For basic graph theoretic terminologies, we refer to Chartrand 

and Zhang [4]. If X ⊆ V, then X is the subgraph induced by X. For 

example if one is locating an emergency facility like police station, fire 
station, hospital, school, college, library, ambulance depot, emergency 

care center, etc., then the primary aim is to minimize the distance 

between the facility and the location of a possible emergency. 

    In 1964, Hakimi [6] considered the facility location problems as 

vertex-to-vertex distance in graphs. For any two vertices u and v in a 

connected graph G, the distance d(u, v) is the length of a shortest u − 
v path in G. For a vertex v in G, the eccentricity e(v) of v is the 

distance between v and a vertex farthest from v in G. The minimum 

eccentricity among the vertices of G is its radius and the maximum 

eccentricity is its diameter, denoted by rad(G) and diam(G) 

respectively. A vertex v in G is a central vertex if e(v) = rad(G) and 

the subgraph induced by the central vertices of G is the center Cen(G) 

of G. A vertex v in G is a peripheral vertex if e(v) = diam(G) and the 

subgraph induced by the peripheral vertices of G is the periphery 

Per(G) of G. If every vertex of G is a central vertex then G is called 

self-centered graph. 

     For example if one is making an election canvass or circular bus 

service the distance from the location is to be maximized. In 2005, 

Chartrand et. al. [3] introduced and studied the concepts of detour 
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distance in graphs. For any two vertices u and v in a connected graph 

G, the detour distance D(u, v) is the length of a longest u − v path in 
G. For a vertex v in G, the detour eccentricity eD(v) of v is the detour 

distance between v and a vertex farthest from v in G. The minimum 

detour eccentricity among the vertices of G is its detour radius and 

the maximum detour eccentricity is its detour diameter, denoted by 

radD(G) and diamD(G) respectively. The detour center, the detour self-

centered and the detour periphery of a graph are defined similar to 
the center, the self-centered and the periphery of a graph, 

respectively. 

     For example when a railway line, pipe line or highway is 

constructed, the distance between the respective structure and each of 

the communities to be served is to be minimized. In a social network 

an edge represents two individuals having a common interest. Thus 

the centrality with respect to edges have interesting applications in 

social networks. In 2010, Santhakumaran [9] introduced the facility 

locational problem as edge-to-vertex distance in graphs as follows: 

For an edge e and a vertex v in a connected graph G, the edge-to-

vertex distance is defined by d(e, v) = min{d(u, v) : u ∈ e}. The edge-

to-vertex eccentricity of e is defined by e2(e) = max{d(e, v) : v ∈ V}. A 

vertex v of G such that e2 (e) = d(e, v) is called an edge-to-vertex 

eccentric vertex of v. The edge-to-vertex radius r2 of G is defined by r2 

= min{e2 (e) : e ∈ E} and the edge-to-vertex diameter d2 of G is defined 
by d2 = max{e2 (e) : e ∈ E}. An edge e for which  e2(e) is minimum is 

called an edge-to-vertex central edge of G and the set of all edge-to-

vertex central edges of G is the edge-to-vertex center C2(G) of G. An 

edge e for which e2(e) is maximum is called an edge-to-vertex 

peripheral edge of G and the set of all edge-to-vertex peripheral 
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edges of G is the edge-to-vertex periphery P2 (G) of G. If every edge 

of G is an edge-to-vertex central edge then G is called the edge-to-

vertex self-centered graph. 

  

   These motivated us to introduce a distance called the edge-to-vertex 

deotur distance in graphs and investigate certain results related to 

edge-to-vertex detour distance and other distances in graphs. These 

ideas have interesting applications in channel assignment problem in 

radio technologies. Also there are useful applications of these 

concepts to security based communication network design. 

Throughout this paper, G denotes a connected graph with at least 

two vertices. 

 

2 Edge-To-Vertex Detour Distance 

 

Definition 2.1. Let e be an edge and v a vertex in a connected graph G. 
An edge-to-vertex e − v path P is a u − v path, where u is a vertex in e 
such that P contains no vertices of e other than u. The edge-to-vertex 

detour distance D(e, v) is the length of a longest e − v path in G. An   
e − v path of length D(e, v) is called an edge-to-vertex e − v detour or 
simply e − v detour. For our convenience an e − v path of length     
d(e, v) is called an edge-to-vertex e − v geodesic or simply e − v 
geodesic. 

 

Example 2.2. Consider the graph G given in Fig 2.1. For the vertex v 

and the edge e = {u, w} in G, the paths P1 : w, v; P2 : u, z, r, v; P3 : u, t, 

s, x, z, r, v and P4 : u, t, s, x, y, z, r, v are e − v paths, while the paths 
Q1 : u, w, v and Q2 : w, u, z, r, v are not e− v paths. Now the edge-to-
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vertex distance d(e, v) = 1 and the edge-to-vertex detour distance  

D(e, v) = 7. Also P1 is an    e − v geodesic and P4 is an e − v detour. 
Note that the e − u and e − w paths are trivial. 

 

Fig 2.1: G 

 

Since the length of an e − v path between an edge e and a vertex v in a 
graph G of order n is atmost n − 2, we have the following theorem. 
Theorem 2.3. For any edge e and a vertex v in a non-trivial connected 

graph G of order n, 0 ≤ d(e, v) ≤ D(e, v) ≤ n − 2. 
 

Remark 2.4. The bounds in the Theorem 2.3 are sharp. For any edge e 

and a vertex v in G, d(e, v) = D(e, v) = 0 if and only if v ∈ e and if G is 

a path P : u1, u2 , ... , un−1, un of order n, then d(e, v) = D(e, v) = n−2, 
where e = {u1, u2}and v = un. Also we note that if G is a tree, then d(e, 

v) = D(e, v) and if e is an edge and v ∈ e is a vertex in an even cycle, 

then d(e, v) < D(e, v). 

 

Theorem 2.5. Let Kn,m (n < m) be a complete bipartite graph with the 

partition V1, V2 of V (Kn,m ) such that |V1 | = n and |V2 | = m. Let e 

be an edge and v a vertex such that v ∈ e in Kn,m, then 
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Proof. For an edge e and a vertex v ∈ e, the length of a longest e − v 
path is 2n− 2 if v ∈ V1 and that of the e − v path is 2n − 1 if v ∈ V2. 

 

Corollary 2.6. Let v be a vertex and e an edge in a complete bipartite 

graph Kn,n such that v ∈ e, then D(e, v) = 2n − 2. 
 

Since every tree has unique e − v path between an edge e and a vertex 
v, we have the following theorem. 

 

Theorem 2.7. If G is a tree, then d(e, v) = D(e, v) for every edge e and 

a vertex v in G. 

 

The converse of the Theorem 2.7 is not true. For any edge e and a 

vertex v in K3, d(e, v) = D(e, v) = 1 if v ∈ e and d(e, v) = D(e, v) = 0 if v ∈ e. 

 

3 Edge-to-Vertex Detour Center 

 

Definition 3.1. The edge-to-vertex detour eccentricity eD2(e) of an edge 

e in a connected graph G is defined as eD2(e) = max {D(e, v) : v ∈ V}. A 

vertex v for which eD2(e) = D(e, v) is called an edge-to-vertex detour 

eccentric vertex of e. The edge-to-vertex detour radius of G is defined 
as, R2 = radD2(G) = min {eD2(e) : e ∈ E} and the edge-to-vertex detour 

diameter of G is defined as, D2 = diamD2(G) = max {eD2(e) : e ∈ E}. An 

edge e in G is called an edge-to-vertex detour central edge if eD2(e) = 
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R2 and the edge-to-vertex detour center of G is defined as, CD2 (G) = 

CenD2(G) =  {e ∈ E : eD2(e) = R2} . An edge e in G is called an edge-to-

vertex detour peripheral edge if eD2(e) = D2 and the edge-to-vertex 

detour periphery of G is defined as, PD2(G) = PerD2(G) = {e ∈E : eD2 (e) 

= D2} . If every edge of G is an edge-to-vertex detour central edge, 

then G is called an edge-to-vertex detour self centered graph. If G is 

the edge-to-vertex detour self-centered graph then G is called the 

edge-to-vertex detour periphery. 

 

Example 3.2. For the connected graph G given in Fig. 3.1, the set of all 

edges in G are given by, E = {e1 = {v1 , v2}, e2 = {v1 , v3}, e3 = {v2 , v3}, e4 

= {v3 , v4}, e5 = {v2 , v4}, e6 = {v4 , v5}}. 

 

Fig. 3.1: G 

 

The edge-to-vertex eccentricity e2(e), the edge-to-vertex detour 

eccentricity eD2(e) of all the edges of G are given in Table 1. 

 

Table 1 
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The edge-to-vertex detour eccentric vertex of all the edges of G are 

given in Table 2. 

 

Table 2 

The edge-to-vertex radius r2 = 1, the edge-to-vertex diameter d2 = 2, 

the edge-to-vertex detour radius R2 = 2 and the edge-to-vertex detour 

diameter D2 = 3. Also the edge-to-vertex center C2 (G) = {e4 , e5}, the 

edge-to-vertex periphery P2 (G) = {e1, e2, e3, e6}, the edge-to-vertex 

detour center CD2(G) = {e3, e4, e5} and the edge-to-vertex detour 

periphery PD2(G) = {e1, e2, e6}. 

 

Example 3.3. The complete graph Kn, the cycle Cn, the wheel Wn and 

the complete bipartite graph Kn,n  are the edge-to-vertex detour self 

centered graphs. 

 

Remark 3.4. An edge-to-vertex self-centered (periphery) graph need 

not be an edge-to-vertex detour self-centered (periphery) graph. For 

the graph G given in Fig 3.2, C2 (G) = E(G), CD2 (G) = {f3}, P2 (G) = 

E(G) and PD2 (G) = {f1, f2, f4,f5}. 
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Fig. 3.2: G 

The edge-to-vertex detour radius R2 and the edge-to-vertex detour 

diameter D2 of some standard graphs are given in Table 3. 

 

 

 

The following theorem is a consequence of Theorem 2.3. 

 

Theorem 3.5. Let G be a connected graph. Then 

  (i) 0 ≤ e2 (e) ≤ eD2 (e) ≤ n − 2 for every edge e in G. 
  (i) 0 ≤ r2 ≤ R2 ≤ n − 2. 
  (ii) 0 ≤ d2 ≤ D2 ≤ n − 2. 
 

Remark 3.6. The bounds in the Theorem 3.5 (i) are sharp. If G = K2, 

then e2(e) = eD2(e) = 0 for every edge e in G and if G is a path P : u1, u2, 

. . . , un−1, un of order n, then e2(e) = eD2(e) = n − 2, where e = {u1 , u2} or 

e = {un , un−1}. Also we note that if G is a tree, then e2(e) = eD2(e) for 
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every edge e in G and for the graph G given in Fig. 2.1, 0 < e2 (e) < eD2 

(e) < n − 2, where e = {u, z}. 
 

Theorem 3.7. For every connected graph G, R2 ≤ D2 ≤ 2R2+1. 

Proof. By definition R2 ≤ D2. Now let P : u1, u2, . . . , un-1, un = v be an 

edge-to-vertex diametral path of length D2 connecting an edge e and a 

vertex v, where e = {u1, u2}, so that D2 = D(e, v) = D(u2, v) and let f be 

a edge of G such that eD2(f) = R2 = D(y, un) = D(x, u1), where f = {x, y}. 

It follows that D2 = D(e, v) ≤ D(e, x)+D(x, y)+D(y, un) ≤ R2+1+R2 ≤ 2R2 

+ 1. 

Remark 3.8. The bounds in the Theorem 3.7 are sharp. For the graph 

G given in Fig 3.3, it is easy to verify that R2 = 1 and D2 = 3. 

 

Fig. 3.3: G 

Ostrand [8] showed that every two positive integers a and b with a ≤ 
b ≤2a are realizable as the radius and diameter respectively of some 
connected graph and Chartrand et. al. [3] showed that every two 

positive integers a and b with a ≤ b ≤ 2a are realizable as the detour 
radius and detour diameter respectively of some connected graph. 

Now we have a realization theorem for the edge-to-vertex detour 

radius and the edge-to-vertex detour diameter of some connected 

graph. 



I.KEERTHI ASIR, S. ATHISAYANATHAN                                                                                       125 

 

Theorem 3.9. For each pair a, b of positive integers with a ≤ b ≤ 2a+1, 
there exists a connected graph G with R2 = a and D2 = b. 

 

Proof. Case 1. a = b. Let G = Ca+2 : u1, u2, . . . , ua+2, u1 be a cycle of 

order a + 2. Then eD2(ui ui+1) = a for 1 ≤ i ≤ a + 1. Thus R2 = a and D2 = 

b as a = b. 

Case 2. b ≤ 2a. Let Ca+2 : u1, u2, . . . , ua+2 , u1 be a cycle of order a + 2 

and Pb−a+1 : v1, v2, . . . , vb−a+1 be a path of order b − a + 1. We construct 
the graph G of order b + 2 by identifying the vertex u1 of Ca+2 and v1 

of Pb−a+1 as shown in Fig. 3.4. It is easy to verify that eD2(u1 u2) = eD2(u1 

ua+2 ) = a. Also eD2(ui ui+1) = b−i+2 for 2 ≤ i ≤ ┌ (a+2)/2 ┐and eD2(ui ui+1 

) = b−a+i−1 for ┌ (a+2)/2 ┐< i ≤ a+1. Also eD2 (vi vi+1 ) = a+i for 1 ≤ i ≤ 
b − a. In particular, eD2(u2 u3) = eD2(ua+1 ua+2) = eD2(vb−a vb−a+1) = b. It is 

easy to verify that there is no edge e in G with eD2(e) < a and there is 

no edge e′ in G with eD2(e′ ) > b. Thus R2 = a and D2 = b as a < b ≤ 2a. 

 

 

Fig. 3.4: G 



EDGE-TO-VERTEX DETOUR DISTANCE IN GRAPHS    126 

Case 3. b = 2a + 1. Construct the graph G as shown in Fig 3.5, it is 

easy to verify that eD2(xv1) = a and eD2(vb-a-1vb-a) = b. Also there is no 

edge e in G with eD2(e) < a and there is no edge e′ in G with eD2(e′) > b. 

Thus R2 = a and D2 = b as b =2a+1. 

 

 

Fig. 3.5: G 

 

   Chartrand et. al. [3] showed that every pair a, b of positive integers 

with a ≤ b is realizable as the radius and the detour radius of some 

connected graph. Now we have a realization theorem for the edge-to-

vertex radius and the edge-to-vertex detour radius of some connected 

graph. 

 

Theorem 3.10. For each pair a, b of positive integers with a ≤ b, there 
exists a connected graph G such that r2 = a and R2 = b. 

 

Proof. Case 1. a = b. Let P1 : u1, u2 , . . . , ua, ua+1 and P2 : v1, v2 , . . . , va, 

va+1 be two paths of order a + 1. We construct the graph G of order 2a 
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+ 2 by joining u1 in P1 and v1 in P2 by an edge. Then e2 (u1 v1) = eD2 (u1 

v1) = a and e2(ui ui+1 ) = e2(vi  vi+1) = a + i for 1 ≤ i ≤ a. It is easy to verify 
that there is no edge e in G with e2(e) = eD2(e) < a. Thus r2 = a and R2 = 

b as a = b. 

Case 2. a < b. We have the following two subcases: 

 

Subcase 1 of Case 2. a = 1. Any complete graph of order Kb+2 is the 

desired graph. 

 

Subcase 2 of Case 2. a ≥ 2. Let P1 : u1, u2, . . , ua, ua+1 and Q1 :v1, v2, . . . , 

va, va+1 be two paths of order a + 1. Let P2 : w1, w2, . . , wb−a+2 and Q2 : 

z1 , z2 , . . , zb−a+2 be two paths of order b − a + 2. We construct the 
graph G of order 2b + 2 as follows: (i) identify the vertices u1 in P1 

with w1 in P2 and also identify the vertices v1 in Q1 with z1 in Q2 (ii) 

identify the vertices u3 in P1 with wb−a+2 in P2 and also identify the 

vertices zb−a+2 in Q2 with v3 in Q1 (iii) join each vertex wi (2 ≤ i ≤ b − a + 
1) in P2 with u2 in P1 and join each vertex zi (2 ≤ i ≤ b − a + 1) in Q2 

with v2 in Q1 (iv) join u1 in P1 with v1 in Q1 . The resulting graph G is 

shown in Fig. 3.6. 
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Fig 3.6: G 

It is easy to verify that 
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It is easy to verify that there is no edge e in G with e2(e) < a and eD2(e) 

< b. Thus r2 = a and R2 = b as a < b. 

 

Chartrand et. al. [3] showed that every pair a, b of positive integers 

with a ≤ b is realizable as the diameter and the detour diameter of 
some connected graph. Now we have a realization theorem for the 

edge-to-vertex diameter and the edge-to-vertex detour diameter of 

some connected graph. 

 

Theorem 3.11. For any two positive integers a, b with a ≤ b, there 
exists a connected graph G such that d2 = a and D2 = b. 

 

Proof. Case 1. a = b. Let Pa+2 : u1 , u2 , . . . , , ua , ua+1 , ua+2 be a path of 

order a + 2. Then e2 (ui ui+1 ) = eD2 (ui ui+1 ) = a − i + 1 for 1 ≤ i ≤ 
┌(a+1)/2┐ and e2 (ui ui+1 ) = eD2 (ui ui+1 ) = i − 1 for ┌(a+1)/2┐< i ≤ a + 
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1. In particular e2 (u1 u2 ) = eD2 (u1 u2 ) = e2 (ua+1 ua+2 ) = eD2 (ua+1 ua+2 ) = 

a. It is easy to verify that there is no edge e in G with e2 (e) = eD2 (e) > 

a. Thus d2 = a and D2 = b as a = b. 

 

Case 2. a < b. We have the following two subcases: 

 

Subcase 1 of Case 2. a = 1. Any complete graph of order Kb+2 is the 

desired graph. 

 

Subcase 2 of Case 2. a = 2. Let G be the graph obtained by joining any 

one vertex of the complete graph Kb of order b with any vertex of a 

path P3 : x1, x2, x3 of order 3. It is easy to verify that e2(x2x3) = a and 

eD2(x2x3) = b. Also there is no edge e in G with e2(e) > a and eD2(e) > b. 

 

Subcase 3 of Case 2. a ≥ 3. Let P1 : u1, u2, . . . , ua, ua+1 be a path of order 

a + 1. Let P2 : w1, w2, . . . , wb−a+2 be a path of order b − a + 2. Let P3 : x1, 

x2 be a path of order 2. We construct the graph G of order b + 2 as 

follows: (i) identify the vertices u1 in P1, w1 in P2 with x1 in P3 and 

identify the vertices u3 in P1 with wb−a+2 in P2 (ii) join each vertex wi (2 

≤ i ≤ b − a + 1) in P2 with u2 in P1 . The resulting graph G is shown in 

Fig. 3.7. 
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Fig 3.7: G 

It is easy to verify that 
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It is easy to verify that there is no edge e in G with e2(e) > a and eD2(e) 

> b. Thus d2 = a and D2 = b as a < b. 

 

Problem 3.12. Characterize the graphs such that CD2(G) = C2(G) 

Problem 3.13. Characterize the graphs such that PD2(G) = P2(G) 

Problem 3.14. Characterize the graphs such that CD2(G) = PD2(G) 

Problem 3.14. Is every graph an edge-to-vertex detour center of some 

graph? 

 

Remark 3.15. The edge-to-vertex detour center of every connected 

graph does not lie in a single block of G. For the Path P2n+1 of order 2n 

+ 1, the edge-to-vertex detour center is always P3, which does not lie 

in a single block. 
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